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SOME PROPERTIES OF THE SHOCK ADIABAT OF QUASITRANSVERSE ELASTIC WAVES * 
A.G. ICULIKOVSKII and E.I. .SVSSHNIKOVA 

It is shown that discontinuities corresponding to points of certain 
quasitransverse shocks, that are not evolutionary from cut.? of the shock 
adiabat,in anisotropic prestressed elastic medium are a sequence of 
two evolutionary shocks moving at identical velocity. Two such 
representations are obtained for certain sections of the shock adiabat. 
The possibility of representing the non-evolutionary discontinuities in 
the form of a sequence of evolutionary discontinuities moving at identical 
velocity in other problems of the mechanics of a continuous medium is 
discussed. 

Quasitransverse shocks are investigated below within the framework 
of the approximations made in /1,2/, where the set of states (the shock 
adiabat), into which it is possible to drop from a given initial state by 
a jump while conserving the conservation laws , was investigated for low- 
iatensity shocks. Segments satisfying the condition of no decrease in 
entropy and the evolution conditions, i.e., the necessary conditions for 
correctness of the linearized boundary conditions on the discontinuity /3!, 
were extracted on the curve sepresenting the shock adiabat. Discontinuities 
corresponding to shock adiabat segments satisfying the requirement of no 
entropy'decrease but not satisfying the evolutionarity conditions because 
of an excess in the number of boundary conditions over the number of unknowns 
in the linearized problem of interation between small perturbations and the 
discontinuity, are discussed in the present paper. 

Representation of the non-evolutionary discontinuities in the form of 
a sequence of evolutionary discontinuities moving at one velocity can 
turn out to be useful in solving different selfsimilar problems containing 
discontinuities. 

1. Formulation of the problem. An isotropic elastic medium is given by its 
internal energy U(Q), S)in the form /1,2/ 

Q, = PCIU = r/JJ,* f PI* + BIzlr -tYI, +61X* + E-J*r -I- 
PJ, (8 - S,) -+- const 

Here Elf are the finite strain tenSOr CCmpCnentS, w, is the displacement vector, PO is 
the density in the unstressed state, S is the entropy, and gr are Lagrange (Cartesian 
rectangular) coordinates. 

In a plane wave with the front Ea = Wt the following displacement gradient components 
undergo change: 

Fig. 1 Fig.2 

Three pairs of waves moving on both sides of the Es axis exist, which can ba separated 
into quasilongitudinal and quasitransverse under moderate strains. 
waves will be considered here. 

Only the quasitransverse 
The equation of the shock adiabat of the quasitransverse shocks 

is obtained from the conservation law on a jump in /1,2/, i.e,, 
in which it is possible to go by a jump from the initial state 

the set of states of U,V, w 

(a* + Y'-R') (Vu- Vu)- 2G&- U)(u- v) = 0 
1u = loo - 2b (u’ + 9 - II’) 

G = (c f ‘4~) (es2 - e,,)/x, R” = U’ + Ilr 

x = p + (P + B + ‘f*Y)‘l@ + p) - 2e 

0.i) 
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2b = h + 2~ -t fi +"&y 

This curve has the form shown in Fig. i in the uu plane. If all the quantities in (1.1) 
are referred to f/a, then the parameter Gdrops out of the shock adiabat equation. This 
means that its dimensions are Eroportional to fl while the shape and location relative to 
the axes depend on rrl%% VilfG. 

The condition for'no de&ease in entropy and the conditions of evolutionartty /3/ have 
the form /1,2/ 

(i.2) 

(1.3) 

Were ec'and Ci" are the Characteristic velocities before and after the jump, respectively, 
where the mJmbering is selected so that ca> cl. Analytic expressions for the characteristic 
velocities are presented in /X,2/. 

for media with w>O, condition (1.2) is satisfied within the circle u*+v*= R*, on 
which the entropy is constant, s== s,= COW. For media with x<O the condition is satisfisd 
outside this circle. The evolutionarity conditions (1.3) turn out to be stronger for weak 
WsitranSverse shocks in an elastic body, and isolate still narrower cknnains. They are 
displayed in the shock adiabat in Fig. 1 by solid lines for media with r>O and by dashed 
lines for media with w<O. 

biagrams displaying the relationships between the shock velocity W and the velocity 
characteristics q,,-and ++which are plotted along the horizontal and vertical axes,rspectively 
/a/, are pr8SWXd in Fig. 2 for x>O and x( 0. The shock adiabat is shown by a curve 
while the projection of each point on each of the axes is considered equal to the velocity 
of the discontinuity W corresponding to this point. The diagram is purely qualitative in 
natureandis for agraphical comparisonbetween thevelocitywandthe characteristicvelocitiasqJ*. 
Bcwev&,tbevelocities W, a~’ and CCcar~beplottedinrealscalesalongtbehorizontal, aswill 
fndeedbeassumedlater.The initialpofntAinFig.lis apointofselfintersection, i.e., there are 
two weak velocity jumps there. Conseguently, the initial state A is representsd by two points 
in the diagrams in Fig. 2. Corresponding points in Figs. 1. and 2 are denoted by identical 
letters. 

The discontinuities satisfying the conditions (1.3)a, fast shocks, correspond to points 
of the shock adiabat Chat fall in the upper cross-hatch& rectangle, while the discontinuities 
satisfying conditions (1.3)b, slow shocks, correspond to the shock adiabat points in the 
lower shaded rectangle. If the discontinuity is at a point on the evolutionary segment 
adjoining the point A, then we call such a jump a discontinuity of the first kind, otherwise, 
it is a discontinuity of the second kind, Depending on the values of V/7/g and V/@ cer- 
taindiscontinuities of the second kind may be missing /2/. These cases are represented by 
dots in Fig. 2. For the sequel, we note that the velocity of the discontinuity has a maximum 
for x>O at the points Eand I, and for x<O at the point H 121. 

Let us mention still another property of the states associated with the shock adiabat. 
It is possible to go from points in the sections DL,AH,AA' on the shock adiabat in media 
with k> 0 and in the sections Al,AE for x(0, to the state shti by the point A (U,v) 
by a jump, just as from the initial poLnts. The conservation laws and the condition of no 
decrease in entropy will evidently be satisfied here. Satisfaction of the evolutionary 
conditions is easily verified by using the diagram in Fig. 2. 

2, Combination of two discontinuities. The ease x>O. We will show that 
the non-evolutionary part FEof the shock adiabat in the right lower rectangle (the conditions 
for its existence are given in /Z/I, corresponds to discontinuities that can be represented 
as the sequence of two evoluttonary shocks, fast and slow moving at the same velocity one 
after the other. For all points of the arc PEa combination exists here that contains a East 
wave of the second kind, and in addition a combination with a fast wave of the first kind 
exists for all points of the arc FE in which W,< min {WE, WJ~. 

Evidently all the conservation laws with the same mass , momentum, and energy flux values 
through unit area of the surface of discontinuity as on the first shock are satisfied on a 
discontinuity consisting of two successive shocks moving at the same velocity. COnseqJJently, 
the state behind such a composite discontinuity lies on the shock adiabat referred to the 
initiar state ahead of the first shock, 

Let us consider two shocks, a fast shock propagatingatavelocity W,and a Slow shock 
moving at a velocity W, in the state behind the first wave. The quantities referring to the 
state behind the first shock will be provided with the subscript i and those referring to the 
state after the second wave will be given the subscript 2. The points A,,A, correspond to 
these states in the ss plane, where if W,== Ws, then according to the above, the point A* 
in addCtion to the point A,, also lies on the first original shock adiabat drawn through the 
point A as the initial one. 

If the fast wave were a wave of the first kind and 

W,<~in{Wr, Wzt (2.1) 

(here Ws, W, are the velocities at the points I and Z% of the first shock adiabat), ihen a 
slow shock always exists that moves over the state behind the first wave at the Same velocity 
ov,= w,. 

To show this, we will first assume that the fast wave is of fairly 10%~ intensity. 



According to (1.3)a and Fig. 2,a, its velocity will satisfy the strict inequalities c,(l) < W < 
&), me state behind this wave will differ slightly from the initial state. Then the 
velocity of the SLOW wave w,'proceeciing in the state A, behind the first shock Can take 
any values between the characteristic velocities tic) and G)ahesd of this wave- This results 

from the fact that the shock adiabat changes slightly for a small. change in *e initial state 
and its point of intersection With the line W-Q- does not vanish in Fig. &a. The point 

portraying the slow shock for which w,= 8~; will lie strictly within the rectangle in Fig. 
2,a t&at corresponds to slow waves for a low first-wave intensity. Since W reaches a maximum 

at the point E, then for the discontinuity portrayed by a Point with the rectange mentioned, 
on the same shock adiabat on which this point lies there are points COXrespondinq to Slow 
shocks with velocities smaller and greater than that selected. 

Now, if W, changes (inCreaSeS) COntinUOuSlY, then a slow shock can always be selected 
with a velocity &equal to W until the point portraying the Slow wave emerges on the boundary 
of the rectangle containing the domain of slow wave evolutionarity. If the equality W- ~8) 
is Satisfied here (the right side of the rectangle) , then the fast shock should correspond to 

the point j; if the equality W=co (*J (the upper boundary of the rectangle) were satisfied, 
then the result of the sequence of two jumps yields the point Et since only at this point of 
the initial Shock adiabat does the equality W= rf hold. As long as the inequality (2.1) is 
satisfied, a slow shock will always exist that trails a fast shock and such that WZ- WI. 

If the inequality (2.1) is satisfied for the whole arc FE, and this is possible for 
WJ> W,, then the combination of evolutionary waves , as fast wave of the first kind and a 
slow wave, exists for each point of this segment. If W,<WS, then only points of the arc 
FP satisfy the inequality (2.1), where the point P is determined by the equality WP = W.Z. 
In this case points of the segment FP yield discontinuities representable in the form of a 
shock sequence: a fast one of the first kind and a slow one. 

On the adiabat of a shock emerging from the point J, there is a point Q. unlike P, for 
which WC = a,-== Ws, where WP = WJ. The point Q evidently belongs to the initial adiabst, 
and as is Seen from Fiq.2,s,lies on the segment EK. When WJ - WE, the points E, P, Q 
merge and the shock adiabats of the first and second waves touch one another at this Point 

(Fig. 1). All the shock adiabats starting at points of the segment AJ intersect the initial 
adiabat twice, on the sections F6 and EK. 

When WJ>W,, there is a point M on the segment AJ such that W,= ws. The shock 
adiabat emerging from the point M is tangent to the initial shock adisbat at the point E. 
All shock adiabats starting from points of the segment AMintersect the initial adiabat 
twice on different sides of the point E, while all shock adiabats starting from points of MJ 
do not intersect the initial shock adiabat. 

We now consider the sequence of a fast wave of the second kind and a slow wave. We 
start with the fast wave corresponding to a point fairly close to the point E. Then the 
difference W,- c,(Q> 0 and can be taken as fairly small. For the state behind the first wave 
(as for any other state), a fairly weak slow shock can be indicated, whose velocity WS exceeds 
the characteristic velocity er (I) ahead of it by a given small quantity so that the equality 
W, = W, will be satisfied. The point portraying this weak slow shock will be within the 
rectangle of slow waves. Like the preceding case, a slow shock with &', equal to W, can 
always be chosen as WI changes (diminishes) as long as the point portraying this slow shock 
remains within the rectnaqle containing the slow waves. It is easy to verify that emergence 
outside the boundary of this rectangle occurs if and only if the point representing the fast 
wave agrees with the point E. Therefore, a non-evolutionary discontinuity corresponding to 
any of the points of the arc FE can be represented in the form of a sequence of a fast Shock 
of the Second kind and a slow shock moving behind it at the same velocity. 

3* 9 
e case xc0, Like theprecedinqcase, allpointsofthearc F'Hcanberepresented 

asasequenceo ~oevolutionarywavesbytwome#ods.OneccmbinationconsistSofafsStwaveofthe 
firstkindandaslowwaveofthe firstkind.Theothercombinationconsistsof afastwaveoftha 
secondkindandaslowwaveofthe firstkind.Alltheproofduplicate~e~Scuss~onexactl~for~a 
case when wJ> W~f3-b Sect.2 (Fiq.2b). 

All the points of the arc DD'correspond to discontinuities representable in the form of 
sequences of fast waves of the first kind and a slow wave of the second kind. Discussion 
resulting in such a conclusion can be performed by increasing the fast shock intensity. For 
a zero fast shock intensity , a Slow wave arrives at the point D. Then the point portraying 
the Slow shock departs within the rectangle and as the fast wave intensity increases further 

does not emerge outside the boundary of this rectangle , which proves the representability of 
the discontinuities corresponding to all points of the segment DD’in the form of the mentioned 
sequence of evolutionary shocks. 

4. Composite discontinuities. Since the possibility of representing non-evolu- 
tionary discontinuities in the form of sequences of evolutionary diecontinuities can be 
valuable not only for elasticity theory , we will discuss this question from a general viewpoint. 

The conditions for the evolutionarity of a discontinuity that separates a domain of 
continuous Solutions Of a hyperbolic equations system include /3f that the number of independent 
boundary conditions Should equal the number of characteristics of different families that 
leave the discontinuity plus one, In solving the linearized problem this will permit the 
determination of the amplitude of the Small perturbation waves leaving the discontinuity along 
the characteristics and the perturbation of the velocity of the discontinuity. 

If there is a confiquration of two evolutionary discontinuities moving with identical 
velocities, then the number of boundary conditions on both discontinuities should equal the 
number of all characteristics leaving both discontinuities plus two. If the velocities of 
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the discontinuities do not agree with the characteristic velocities, than the number of 
characteristics leaving both discontinuities in the domain separating then will equal the 
orderofthesystem, i.e., thenumberofindepandentvariables characterizingthe state between the 
disconUnuities. Ifallquantitfee characterizingthe statebetweenthediscontinuities areelix- 
inatedfromtherelatfonshipsonthediscontfnuities (atleastmantally),thenthenu&erofre~in- 
ing relaU~s~ps~nnecUng~e~antiUe5wi~~eextemalsi~sof~e systemofdiscontinuities 
andthevelociUesWtand We ofthediscontinuitieswilltgualthen~erofcharactaristicsdepart- 
ingto theoutsidepluatwo. JustaemanyrelationahfpaareevidentlyneededtofMtheperturbations 
outside the system of discontfnuities and the perturbations of their velocities. 

As already noted, if Wr== We, then the sequence of such two discontinuities could be 
considered one discontinuity with all the conservation laws satisfied on it. This discontinu- 
ity is evidently non-evolutionary since, according to the above, the number of boundary 
conditions thereon exceeds the number of characteristics leaving it by two. Moreover, upon 
actual interaction with small perturbations, the velocities W, and W, can receive different 
increments, the jump is split and the perturbations cease to be small. If W, and W, are 
considered to be identically equal in the relations on the discontinuity (i.e., itisconridered 
that the increments of these quantities are also equal), then the solution of the problem of 
interaction between the discontinuity and arbitrary small perturbations will not exist. 

By reasoning similar to that presented above , it can be seen that if there are m 
evolutionary disoontinulties moving at the same velocity u’, = W, = . ..= W,, then the number 
of independent relationships on such a discontinuity from which quantities characterizing the 
state between the diascontinuities are eliminated (or did not enter from the very beginning), 
should exceed by mthe nuaber of characteristics leaving such a combined discontinuity. 

Hence, the following recommendation can be formulated. If there is a discontinuity on 
which the known relationships (following from the conservation laws, say) are too many for 
evolutionarity as a single discontinuity, then several evolutionary discontinuities should be 
sought which will turn into the discontinuity of interest to us when their velocities are 
equal. 
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THE CONTACT-HYDRODYNAflIC PROBLEM OF LUBRICATION 
THEORY FOR ELASTIC BODIES WITH CRACKS * 

1.1. KUDISH 

A mechanical model of lubricating solid bodies weakened by cracks 
is proposed. The model can be used to explain the reason for fatigue- 
induced crumbling of the surfaces. The presence of boundary and sub- 
surface cracks is taken into account, and the interaction of the 
lubricant with elastic bodies within the cavities of boundary cracks is 
regarded as the most interesting aspect of the problem. Conditions are 
obtained characterizing the actual behaviour of the lubricant within 
the crack cavities, taking into account the pressure rise in the closed 
cavities completely filled with the lubricant and the possible onset Of 
cavitation. The problem is reduced to a system of non-linear integro- 
differential and linear integral equations with additional conditions 
in the form of equations and inequalities. 

The method of regular perturbations is used to study the state of 
weakly loaded elastohydro@namic contact. In this casa the problem is 
reduced to a sequence of purely hydradynamic boundary value problens for 
the non-linear or linear ordinary differential equations, and elastic 
problems for the linear integral equations with one-Sided ConStrafnts. 

The effect of the temperature and lubricant on the contact stresses, 
taking the roughness of the bodies into account, was analysed in /l-3/ 
and the development of cracks and their influence on long-term fatigue 
in /4-71. 


