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SOME PROPERTIES OF THE SHOCK ADIABAT OF QUASITRANSVERSE ELASTIC WAVES +

A,G. KULIKOVSKII and E.I. SVESHNIKOVA

It is shown that discontinuities corresponding to points of certain
quasitransverse shocks, that are not evolutionary from cuts of the shock
adiabat, in an isotropic prestressed elastic medium are a seguence of
two evolutionary shocks moving at identical velocity. Two such
representations are obtained for certain sections of the shock adiabat.

The possibility of representing the non-evolutionary discontinuities in
the form of a sequence of evolutionary discontinuities moving at identical
velocity in other problems of the mechanics of a continuous medium is
discussed.

Quasitransverse shocks are investigated below within the framework
of the approximations made in /1,2/, where the set of states {the shock
adiabat), into which it is possible to drop from a given initial state by
a jump while conserving the conservation laws, was investigated for low-
sntensity shocks. Segments satisfying the condition of no decrease in
entropy and the evolution conditions, i.e,, the necessary conditions for
correctness of the linearized boundary conditions on the discontinuity /37,
were extracted on the curve representing the shock adiabat. Discontinuities
corresponding to shock adiabat segments satisfying the requirement of no
entropy decrease but not satisfying the evolutionarity conditions because
of an excess in the number of boundary conditions over the number of unknowns
in the linearized problem of interation between small perturbations and the
discontinuity, are discussed in the present paper.

Representation of the non-evolutionary discontinuities in the form of
a sequence of evolutionary discontinuities moving at one velocity can
turn out to be useful in solving different selfsimilar problems containing
discontinuities,

1. Formulation of the problem. an isotropic elastic medium is given by its
internal energy U (g;;, §)in the form /1,2/
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Here ¢g;; are the finite strain tensor components, w; is the displacement vector, p, is
the density in the unstressed state, S is the entropy, and §, are Lagrange (Cartesian
rectangular} coordinates,

In a plane wave with the front §, = Wt the following displacement gradient components
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Three pairs of waves moving on both sides of the §, axis exist, which can be separated
into gquasilongitudinal and guasitransverse under moderate strains. Only the quasitransverse
waves will be considered here. The equation of the shock adiabat of the quasitransverse shocks
is obtained from the conservation law on a jump in /1,2/, i.e., the set of states of u, v, w
in which it is possible to go by a jump from the initial state
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This curve has the form shown in Fig, 1 in the wv plane., If all the quantitias in (1.1)
are referred to VE, then the parameter G drops out of the ghock adiabat equation. This
means that its dimensicn_s are proportional to Va while the shape and location relative to
the axes depend on U/VG, VIYG.

The condition for no decrease in entropy and the conditions of evolutionarity /3/ have
the form /1,2/
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Here ¢" and ¢ are the characteristic velocities before and after the jump, respectively,
where the numbering is selected so that ¢, > ;. Analytic expressions for the characteristic
velocities are presented in /1,2/.

For media with %>0, condition {1.2) is satisfied within the circle u?-+v*= A%, on
which the entropy is constant, S = §,= const. For media with x< 0 the condition is satisfied
outside this circle. The evolutionarity conditions (1.3) turn out to be stronger for weak
quasitransverse shocks in an elastic body, and isolate still narrower domains. They are
displayed in the shock adiabat in Fig. 1 by solid lines for media with x>0 and by dashed
iines for media with x<0.

Diagrams displaying the relationships between the shock velocity W and the velocity
characteristics ¢ ,-and ¢,*which are plotted along the horizontal and vertical axes, rspectively
/4/, are presented in Fig. 2 for »z>0 and %< 0. The shock adliabat is shown by a curve
while the projection of each point on each of the axes is considered equal to the velocity
of the discontinuity W corresponding to this point, The diagram is purely qualitative in
nature and is for a graphical comparison between the velocity W and the characteristic velocities as®.
However, the velocities W, o~ and o canbe plotted in real scales along the horizontal, aswill
indeed be assumed later. The initial pointAinFig.l is apointof selfintersection, i.e., there are
two weak velocity jumps there. Consequently, the initial state & is represented by two points
in the diagrams in Fig, 2. Corresponding points in Figs. 1 and 2 are denoted by identical
letters,

The discontinuities satisfying the conditions (l.3)a, fast shocks, correspond to points
of the shock adiabat that fall in the upper cross-hatched rectangle, while the discontinuities
satisfying conditions (1.3)b, slow shocks, correspond to the shock adiabat points in the
lower shaded rectangle. If the discontinulty is at a point on the evolutionary segment
adjoining the point A, then we call such a jump a discontinuity of the first kind, otherwise,
it is a discontinuity of the second kind. Depending on the values of U/YG and V/¥G cer-
taindigcontinuities of the second kind may be missing /2/. These cases are represented by
dots in Fig. 2. For the sequel, we note that the velocity of the discontinuity has a maximum
for x>0 at the points E and J, and for % <0 at the point ¥ /2/.

Let us mention still another property of the states associated with the shock adiabat.

It is possible to go from points in the sections DL, AH, 4AA’ on the shock adiabat in media
with %> 0 and in the sections AJ, AEF for x <0, to the state shown by the point 4 (U, V)
by a jump, just as from the initial points. The conservation laws and the condition of no
decrease in entropy will evidently be satisfied here. Satisfaction of the evolutionary
conditions is easily verified by using the diagram in Fig. 2.

2. Combination of two discontinuities, The case x>0, We will show that
the non-evolutionary part FE of the shock adiabat in the right lower rectangle (the conditions
for its existence are given in /2/), corresponds to discontinuities that can be Yepresented
as the sequence of two evolutionary shocks, fast and slow moving at the same velocity one
after the other. For all points of the arc FE a combination exigts here that contains a fast
wave of the second kind, and in addition a combination with a fast wave of the first kind
exists for all points of the arc FE in which W < min {Wg, Wi

Evidently all the conservation laws with the same mass, momentum, and energy flux values
through unit area of the surface of discontinuity as on the first shock are satisfied on a
discontinuity consisting of two successive shocks moving at the same velocity. Consequently,
the state behind such a composite discontinuity lies on the shock adiabat referred to the
initial state ahead of the first shock.

Let us consider two shocks, a fast shock propagating at a velocity W, and a slow shock
moving at a velocity W, in the state behind the First wave. The quantities referring to the
state behind the first shock will be provided with the subscript 1 and those referring to the
state after the second wave will be given the subscript 2. The points 4,, 4, correspond to
these states in the uv plane, where if W,=W,, then according to the above, the point 4,
in. adgition to the peint A4,, also lies on the first original shock adiabat drawn through the
point A as the initial one.

If the fast wave were a wave of the first kind and

W, < min (Wg, Wy} 2.9
{here Wpg, Wr are the velocities at the points J and E of the first shock adiabat), then a
slow shock always exists that moves over the state behind the first wave at the same velocity

W, = W,.
To show this, we will first assume that the fast wave is of fairly low intensity.
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According to (1.3)a and Fig. 2,a, its velocity will satisfy the strict inequalities aM < W
o, The state behind this wave will differ slightly from the initial state. Then the
velocity of the slow wave W, proceeding in the state 4; behind the first shock can take
any values between the characteristic velocities o and " ahead of this wave. This results
from the fact that the shock adiabat changes slightly for a small change in the initial state
and its point of intersection with the line W=~ does not vanish in Fig. 2,a. The point
portraying the slow shock for which W,= W, will lie strictly within the rectangle in Fig.
2,a that corresponds to slow waves for a low first-wave intensity. Since W reaches a maximum
at the point E, then for the discontinuity portrayed by a point with the rectange mentioned,
on the same shock adiabat on which this point lies there are points corresponding to slow
shocks with velocities smaller and greater than that selected.

Now, if W, changes (increases) continuously, then a slow shock can always be selected
with a velocity W, equal to W until the point portraying the slow wave emerges on the boundary
of the rectangle containing the domain of slow wave evolutionarity. If the equality W= o®
is satisfied here (the right side of the rectangle), then the fast shock should correspond to
the point J; if the equality W =% (the upper boundary of the rectangle) were satisfied,
then the result of the sequence of two jumps yields the point E, since only at this point of
the initial shock adiabat does the equality W =g* hold. As long as the ineguality (2.1) is
satisfied, a slow shock will always exist that trails a fast shock and such that W,= W,

If the inequality (2.1) is satisfied for the whole arc FE, and this is possible for
Wy > Wg, then the combination of evolutionary waves, as fast wave of the first kind and a
slow wave, exists for each point of this segment. If W;< Wy, then only points of the arc
FP satisfy the inequality (2.1), where the point P is determined by the equality Wp = W,.
In this case points of the segment FP yield discontinuities representable in the form of a
shock sequence: a fast one of the first kind and a slow one.

On the adiabat of a shock emerging from the point J, there is a point @, unlike P, for
which Wg = ¢;” = Wp, where Wp = W;,. The point @ evidently belongs to the initial adiabat,
and as is seen from Fig. 2,a, lies on the segment KEK. When Wy = Wy, the points E, P, (Q
merge and the shock adiabats of ‘the first and second waves touch one another at this point
(Fig., 1). All the shock adiabats starting at points of the segment A4J intersect the initial
adiabat twice, on the sections FE and EK.

when W; > Wz, there is a point ¥ on the segment AJ such that Wy = Wy. The shock
adiakat emerging from the point M is tangent to the initial shock adiabat at the point E.
All shock adiabats starting from points of the segment AM intersect the initial adiabat
twice on different sides of the point E, while all shock adiabats starting from points of MJ
do not intersect the initial shock adiabat.

We now consider the sequence of a fast wave of the second kind and a slow wave., We
start with the fast wave corresponding to a point fairly close to the point E. Then the
difference W; — ;M >> 0 and can be taken as fairly small. For the state behind the first wave
(as for any other state), a fairly weak slow shock can be indicated, whose velocity W, exceeds
the characteristic velocity ¢, ahead of it by a given small quantity so that the equality
W, = W; will be satisfied. The point portraying this weak slow shock will be within the
rectangle of slow waves, Like the preceding case, a slow shock with W, equal to W, can
always be chosen as W, changes (diminishes) as long as the point portraying this slow shock
remains within the rectnagle containing the slow waves, It is easy to verify that emergence
cutside the boundary of this rectangle occurs if and only if the point representing the fast
wave agrees with the point E. Therefore, a non-evolutionary discontinuity corresponding to
any of the points of the arc FE can be represented in the form of a sequence of a fast shock
of the second kind and a slow shock moving behind it at the same velocity,

3. Tt}e case % < 0. Like the preceding case, all points of the arc F'H canbe represented
as a sequence of two evolutionary waves by two methods. One combination consists of a fast wave of the

first kind and a slow wave of the first kind. The other combination consists of a fast wave of the
second kind and a slow wave of the £irst kind. All the proof duplicate the discussion exactly for the
case when W; > Wgin sect.2 (Fig.2b),

All the points of the arc DD’ correspond to discontinuities representable in the form of
sequences of fast waves of the first kind and a slow wave of the second kind, Discussion
resulting in such a conclusion can be performed by increasing the fast shock intensity. For
a zero fast shock intensity, a slow wave arrives at the point D. Then the point portraying
the slow shock departs within the rectangle and as the fast wave intensity increases further
does not emerge outside the boundary of this rectangle, which proves the representability of
the discontinuities corresponding to all points of the segment DD’ in the form of the mentioned
sequence of evolutionary shocks.

4, Composite discontinuities. since the possibility of representing non-evolu=-
tionary discontinuities in the form of sequences of evolutionary discontinuities can be
valuable not only for elasticity theory, we will discuss this question from a general viewpoint.

The conditions for the evolutionarity of a discontinuity that separates a domain of
continuous sclutions of a hyperbolic equations system include /3/ that the number of independent
boundary conditions should equal the number of characteristics of different families that
leave the discontinuity plus one. 1In solving the linearized problem this will pernit the
determination of the amplitude of the swall perturbation waves leaving the discontinuity along
the characteristics and the perturbation of the velocity of the discontinuity.

If there is a configuration of two evolutionary discontinuities moving with identical
velocities, then the number of boundary conditions on both discontinuities should equal the
number of all characteristics leaving both discontinuities plus two, If the velocities of
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the discontinuities do not agree with the characteristic velocities, then the number of
characteristics leaving both discontinuities in the domain separating them will egual the
ordex of the system, i.e., the number of independent variables characterizing the state between the
discontinuities. If all quantities characterizing the state between the discontinuities are elin-
inated from the velationships on the discontinuities (at least mentally), then the number of remain~
ing relationships connecting the quantities with the external sides of the system of digcontinuities
and the velocities W;and W, of the discontinuities will equal the number of characteristics depart-
ing to the outside plus two. Just as many relationships are evidently neaded to £ind the perturbations
outside the system of discontinuities and the perturbations of their velocities,

As already noted, if W, = W,, then the sequence of such two discontinuities could be
considered one discontinuity with all the conservation laws satisfied on it. This discontinu-
ity is evidently non-evolutionary since, according to the above, the number of boundary
conditions thereon exceeds the number of characteristics leaving it by two. Moreover, upon
actual interaction with small perturbations, the velocities W, and W, can receive different
increments, the jump is split and the perturbations cease to be small, If W, and W, are
considered to be identically equal in the relations on the discontinuity {(i.e., it is congidered
that the increments of these gquantities are also sequal), then the solution of the problem of
interaction between the discontinuity and arbitrary small perturbations will not exist.

By reasoning similar to that presented above, it can be seen that if there are m
evolutionary discontinuities moving at the same velocity Wy = W, = ...== W,, then the number
of independent relationships on such a discontinuity from which quantities characterizing the
state between the discontinuities are eliminated (or did not enter from the very beginning),
should exceed by m the number of characteristics leaving such a combined discontinuity.

Hence, the following recommendation can be formulated. If there is a discontinuity on
which the known relationships (following from the conservation laws, say) are btoo many for
evoluticnarity as a single discontinuity, then several evolutionary discontinuities should be
sought which will turn into the discontinuity of interest to us when their velocities are
equal.,
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THE CONTACT-HYDRODYNAMIC PROBLEM OF LUBRICATION
THEORY FOR ELASTIC BODIES WITH CRACKS *

I.I. KUDISH

A mechanical model of lubricating solid bodies weakened by cracks
is proposed. The model can be used to explain the reason for fatigue-
induced crumbling of the surfaces. The presence of boundary and sub~
surface cracks is taken into account, and the interaction of the
lubricant with elastic bodies within the cavities of boundary cracks is
regarded as the most interesting aspect of the problem. Conditions are
obtained characterizing the actual behaviour of the lubricant within
the crack cavities, taking into account the pressure rise in the closed
cavities completely filled with the lubricant and the possible onset of
cavitation. The problem is reduced to a system of non-linear integro-
differential and linear integral equations with additional conditions
in the form of equations and inequalities.

The method of regular perturbations is used to study the state of
weakly loaded elastohydrodynamic contact. In this case the problem is
reduced to a sequence of purely hydrodynamic boundary value problems for
the non-linear or linear ordinary differential equations, and elastic
problems for the linear integral equations with one-gided constraints.

The effect of the temperature and lubricant on the contact stresses,
taking the roughness of the bodies into account, was analysed in /1-3/
and the development of cracks and their influence on long-term fatigue
in /4~7/.
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